2

The Application of Fourier
Analysis to the Uncoupling
of Lattices

We shall apply here Fourier analysis and other vector space and symmetry
concepts introduced in Chapter 1 to the study of certain coupled systems
which have simple mechanical realizations as one-dimensional crystalline
lattices. In Section 2.1 we define the constituents of such systems and their
corresponding solution so that we may pose the problem of uncoupling
lattices of such elements in Section 2.2. A rather detailed study of the basic
solutions is made in Section 2.3 for a simple lattice and in Section 2.4 for
more complicated ones which can be described by second- or farther-neighbor
interaction in crystals or as molecular or diatomic chains. We go to a more
general setting in studying energy and other phase-space concepts which
belong properly to analytical mechanics. Sections 2.5 and 2.6 can be read
after the first two sections if the reader so prefers. Although examples drawn
from Sections 2.3 and 2.4 are used to illustrate examples of the theory, the
reader should be able to follow the general presentation easily.

2.1. Mechanical and Electric Analogies

We shall study here the elements which constitute coupled systems of a
rather general type, exemplified by mechanical and electric networks. The
former are constituted by masses, restitution forces (springs), driving forces,
and viscous damping; the latter will consist of a standard RLC circuit plus
electromotive forces. The differential equations which describe the time
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evolution of these two systems point out analogies between their constituent
elements.

2.1.1. Masses, Springs, and Damping

The equation of motion of the simple mechanical system in Fig. 2.1 can
be found from the following considerations. The external (time-dependent)
force F(t) will produce the following: (a) an acceleration f(z) of the mass M,
where f(t) = d?f(t)/dt?; (b) a stretching f(¢) of the spring with Hooke’s
constant k; and (c) if the system is immersed in a “perfect™ viscous fluid,
when moving it will experience a velocity-dependent drag cf(t), where c is the
damping constant of the medium (¢ > 0). Setting action equal to reaction, we
can write the mechanical equation of motion as

Mf(@t) + cf(t) + kf(t) = F(). @.1)

This is an inhomogeneous second-order /linear differential equation with
constant coefficients, whose solution is quite simple. Of course, actual
mechanical systems do not exhibit a constant k for all deformations f(¢)
since the spring must be finite; the viscous damping does not, for all velocities,
have the simple ¢f(¢) behavior, and frictional forces—constant and opposite
to the direction of motion—can certainly be present. Nevertheless, Eq. (2.1),
besides being a good model for actual mechanical situations, lends itself

admirably to the modeling of other apparently unrelated systems. It also has
the advantage of mathematical simplicity.

2.1.2. Inductances, Capacitors, and Resistance

The electric RLC circuit of Fig. 2.2 consists of a series connection of a
resistance R, an inductance L, a capacitor C, and an applied electromotive

Fig. 2.1. A driven, damped oscillator. An inertial mass
M (with elongation f) is subject to a restitution
spring with Hooke’s constant &, a viscous damp-
ing device of constant ¢, and a driving force F.
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Fig. 2.2. A simple RLC circuit. The current i
flows through an inertial inductance
L, a ““spring” capacitor C, and a
damping resistance R and is driven
by an electromotive source e.

force e(?). If the circulating change is ¢(#) and the current is i(¢) = dq(t)/dt =
4(2), Kirchhoff’s second law leads to the equations

Lg(t) + Rq(t) + C~q(t) = €é(2), (2.2a)
C§(t) + RCLq(t) + L™q(t) = CL™(¢), (2.2b)

where we have multiplied the first by CL~* to obtain the second. Equations
(2.1) and (2.2) are of the same form and lead to analogies between mechanical
and electric elements. The spring elongation f(¢) and velocity are identified
with the circulating charge ¢(¢) and current, while mass, restitution, and vis-
cous drag are identified with either L, C~*, and R or C, L™, and RC/L.
The first analogy is perhaps the more intuitive one, as kinetic and potential
mechanical energy are made to correspond with magnetic and electrostatic
forms of energy. The second set leads to a correspondence between a class of
electric networks and mechanical lattices, as has been presented in the classic
book by Brillouin (1946). We shall henceforth refer only to mechanical
lattices in illustrating the concepts of complex vector spaces and the Fourier
transform. Standing or traveling waves, for instance, are easier to visualize
in a mechanical device than in the dials of an array of meters in a circuit.
The methods and results can be applied without undue extra effort to the
electric case.

2.1.3. Longitudinal and Transverse Mechanical Vibrations

Since many of the models mentioned above make use of longitudinal as
well as transverse vibrations of lattices, it is important to point out the
difference between the two. Longitudinal vibrations in lattices will be
described in the next section and follow the elementary system in Fig. 2.1
and the ensuing solution. For transverse vibrations there is more than Eq.
(2.1) to the problem, so we propose the following:

Exercise 2.1. Consider transverse vibrations of the mass M under the action
of two springs each of constant +k as depicted in Fig. 2.3. Let the unstretched
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Fig. 2.3. A mass allowed to perform transverse
vibrations under the influence of two
springs.

length of the springs be a,. Show that this leads to the nonlinear differential
equation

M) + of (1) + 2kf(D[1 — ao(a® + f(1)?)™12] = F(1). (2.3)

Exercise 2.2. Show that in Eq. (2.3) we can make two approximations:
(a) Assume that the stretched length / (Fig. 2.3) is much longer than the natural
length ao. (b) Assume that the oscillations are small, so that [a? + f(¢)?]*? ~ a.
In each case one obtains a linear differential equation. They are not identical
though.

2.1.4. Solutions to the Equations of Motion with Initial Conditions

In the absence of external forces, Egs. (2.1)-(2.2) admit solutions of the
general type

f() = aexp(iot), (2.4)

where a is a constant and w can be found by substituting (2.4) into (2.1):
—Mo? + jco + k = 0, 2.5)

i.e., we have two possible values of w, given by
s de |k _ (e .
) —2Mi [M (2M) ] =il' + o (2.6a)
T el _ T2\

| F= 3 w® = (k/M — I'?)!2, (2.6b)
Hence, the general solution of the homogeneous equation (2.1) can be written as
(@) = exp(—T't)[a exp(iw®t) + b exp(—iwt)] 2.7

for a and b arbitrary constants. The latter can be determined from two
known data about f(¢) and/or its derivatives. Typically, if we know the value
and derivative of f(¢) at some initial time #,, /5 = f(t,) and fo = df(7)/d7|, s,
Eq. (2.7) for t = t, allows us to solve for a and b as
a = — (2wt exp(—iw*te)(w™fo + ifo), (2.8a)
b = (Quw®) 1 exp(—iw to)(ew*fy + ifo). (2.8b)
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Replacement into (2.7) yields
f() = Qo) Y{—w~ explio*(t — t))] + o* explin~(t — t)]}fo
+ iQw®) Y —explin*(t — t;)] + explio~(t — t)l}fo.  (2.9)

Reducing further, we can bring the solution to the form

f(®) = [G(z — 1) + 2T'G(t — to)lfo + G(t — to)fos (2.10)
where for w° real we have defined
G(7) = (v®) ! exp(—I'7) sin w°r (oscillatory) (2.11a)

and its time derivative
G(r) = —T'G(7) + exp(—TI'7) cos wr. (2.11b)
As G(7) depends on ¢, M, and k, it will serve us to denote it occasionally by

GM-¥(7). Clearly, G(7) and G(r) are themselves solutions of the original
differential equation (2.1) with no external forces present.

2.1.5. Critical and Overdamped Cases

The structure of the general solution given by (2.10) is quite transparent.
If the damping is small with respect to the restitution spring (more precisely,
for ¢? < 4Mk), »® is a real number, playing the role of the effective angular
frequency, and the nature of (2.10)—(2.11) is that of a damped oscillation.
See Fig. 2.4.

<[G() I-s TGC I'=1 T(;d I'=2
AN N
——y ) D [\

& . & .

Go G Gy

t t t

\/ —7; " >

Fig. 2.4. The functions G(z) and G(¢) for the oscillatory (0), critical (c), and overdamped
(d) cases. Time units of (M/k)*'? are used, the z-axis representing the interval
from O to 10. The vertical axes of the figures have height 1. Damping constants
in each case are chosen as I' = 0.5, 1, and 2.
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If the damping constant increases, the effective angular frequency will
decrease and reach zero when ¢ = 4Mk. In this case (critical damping), the
solution (2.10) retains its form, but, as (w®)~?! sin w®r — 7, the function G(7)
is now given by

G(7) = rexp(—TI'7) (critical) (2.12)

and G(7) accordingly. See Fig. 2.4 (curves G, and G.). Finally, for ¢ > kdM
we have the overdamped situation when the solution is (2.9) with

G(7) = W°)~t exp(—I'7) sinh wer (overdamped), (2.13a)
iw® = w® = i(T2 — k/M)"2. (2.13b)

See Fig. 2.4 (curves G, and G,). As |w®| < T for all k > 0, the solutions fall
to zero exponentially, while no proper oscillation takes place.

2.1.6. Some Further Remarks and Exercises

The solution of (2.1) in the presence of an external driving force is a
sum of the general solution of the homogeneous part of the differential
equation seen above plus a particular solution of (2.1). The general con-
struction of the solution to the inhomogeneous equation (2.1) will be made
using the techniques of Fourier and Laplace transforms in Sections 7.4 and
8.1. The methods in this part are not significantly dependent on the presence
of external forces so we shall henceforth work only with the Zomogeneous
equation (2.1), which represents a damped-oscillator equation of motion with
initial conditions.

Among the systems whose models are lattices constituted by such ele-
ments we have the oscillations of natural crystals and electric circuits in a
larger network; in fact, it is the very model of an elastic ether as conceived in
his time by Newton and followed for several centuries which led to Maxwell’s
equations for the electromagnetic field.

Exercise 2.3. Refer to Exercise 2.2. Denote by w, the angular frequency of
approximation (a) [simply w, = w® in (2.6b)] and w, that of approximation (b)
[as above but replacing the spring constant k by k, == k(1 — ao/a)]. Show that in
approximation (b) the longitudinal and transverse oscillation frequencies are not
equal but that

wlwy = [(1 — ao/a) — c*/2MK]*.

Hence, when drawing transverse oscillations and using the mathematical language
of longitudinal ones, we are referring to approximation (b).

Exercise 2.4. Follow the dévelopments in this section for the undamped case
¢ = 0. Find G°™*(7) and the form (2.10).
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Exercise 2.5. Consider the case when no spring is present (k = 0). In that
case w* = ic/M, o~ =0, and we are always in the overdamped case with
w = I' = ¢/2M. Show that the general solution is (2.10) with

GMo(7) = (2I)"1[1 — exp(—2I'7)], GM(7) = exp(—2T'7), (2.14)

ie.,
f@®) = fo+ @)1 — exp[—2T'(t — 1)1} fo. (2.15)

Exercise 2.6. Examine the situation where no damping or spring is present.
You can solve the problem either directly or by considering (2.14)-(2.15) as
I' — 0. Show that the solution can still be written in the form (2.10) with

GOMO(T) =, G'OMO(T) =1, (2.16)
so that
f@) = fo + (t = to)fo, 2.17)

i.e., simple inertial motion.

Exercise 2.7. Follow the development in this section when M = 0, so the
second-derivative term in (2.1) vanishes. The oscillating body looses its inertia,
and only restitution and viscous forces act. Show that the solution, in terms of the
initial displacement at ¢, is

(1) = foexp[—k(t — to)/cl]. (2.18)

Exercise 2.8. Verify that the solution (2.18) can also be obtained from (2.10)
and (2.13) by letting M — 0. Note that although I', w® — oo, their difference
w~ — —ik/c. Similarly, although G°°%*(7), G°°*(r) — 0, the term 2I'G°°*(7) in
(2.10) survives and gives rise to the form (2.18).

2.2. The Equation of Motion of Coupled Systems and Solution

A system of N interacting elements will be called a /attice. In its simplest
one-dimensional mechanical realization, it is a set of N masses interacting
through spring-like forces. This interaction can be nonzero for a pair of
“nearest neighbors” only or can include ‘““farther” masses as well. Each
particle by itself, in addition, can be subject to viscous and external forces.
When the nearest-neighbor interaction is the most significant, it is convenient
to arrange the mass points on a line where the first-neighbor relation is
manifest. Further, as we assume every mass to have two first neighbors, the
points in the lattice will close in a circle. See Fig. 2.5. This model is also
useful to describe second- and farther-neighbor harmonic oscillator inter-
actions.
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Fig. 2.5. Mechanical lattice composed of
masses M and springs k£ with
first-neighbor interaction only.

2.2.1. Inertial, Interaction, and Dissipation Operators

Let f, denote the displacement of the nth mass M, relative to its equi-
librium position. Unless the lattice is at rest, it will be a function of time:
Jfo = fu(2). For the purpose of the model we assume here the vibrations in the
lattice to be longitudinal only. Let k,,, be the spring constant between particles
n and m; then the force acting on the nth mass is k,,,(f, — fn) in the direction
from mass » to mass m. (See Fig. 2.6 for first-neighbor interactions.) If we
add the possibility of having a spring k,, between M, and its equilibrium
position, the total force on M, due to the interaction among the lattice
elements is thus

Z knm(f;l _fm) + knnfn
= - Z knmfm +fnz knm

m#n m

=2, [Kan + Sum(Fun + Z Feur) | fr = Z koS (2.19)

m

n-1 n n+1
Fig. 2.6. Longitudinal vibrations in a linear lattice. Positions, elongations, and acting
forces of the deformed lattice (above) are shown vis-a-vis the undeformed
situation (below).
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We assume, as in Section 1.6, that the lattice is closed (Fig. 2.5) so that its
elements are numbered modulo N. Hence f; and f; , nv (m integer) describe
the same displacement. If, finally, the damping constant for the nth element
is ¢, and F,, = F,(¢) is the external force, the equation of motion for the nth
particle in the lattice is

Mufot s % D o=y =12 .,8 (2.20)

2.2.2. Equation of Motion in Operator Form and the Problem of Uncoupling

The N equations (2.20) can be combined into a single vector equation
if we identify f, with the nth coordinate of a vector f in some (for definiteness,
the orthonormal &-) basis, as was done in Section 1.6, and the same for F,.
The coefficients «,, can be arranged into a matrix K = ||«,,|| in the same
basis, representing an interaction operator K. Similarly, M, and ¢, can be
taken to be the elements of diagonal matrices M = |M,$,,| and C =
| cndnm| representing the inertial and dissipation operators M and C. Equa-
tions (2.20) can then be written as

Mf + Cf + Kf = F. .21)

This form is basis independent and in a sense hides the fact that it was obtained
from N coupled differential equations (2.20): The solution f, for the nth
particle depends through the interaction term on the solution for the other
Jfw’s, which in turn depend on other ones until all N coordinates are involved.
This is what Fig. 2.5 tells us. If the interaction operator K had a basis where
it was represented by a diagonal matrix, and in that basis M and C also had
diagonal representatives, Eq. (2.21) would yield a set of N uncoupled equations
which could be solved independently, thereby reducing the problem to that
of last section. This may not be possible in general, though it will be for the
case when M and C are multiples of the identity operator—M = M1,
C = c¢l—for then they are represented by diagonal matrices in any basis,
meaning in particular that all masses and damping constants are equal. In
that case we need only direct our efforts toward finding the eigenbasis of K.
In that basis, K will be represented by a diagonal matrix, and the system of
equations will uncouple. Such an eigenbasis does exist, as shown through
the following.

Exercise 2.9. The action of the mth mass on the nth through the spring
with constant k,,, should equal the action of the nth on the mth; hence k. = kpn.
Show that this implies that K is a self-adjoint operator. We proved in Section 1.7
that all such operators have a complete eigenbasis. Notice that if k,, = 0 and
knn # 0 this means that mass m is acted upon by but does not influence mass #.
This is a ““servomechanism’’ whereby the position of mass » is monitored as an
external force on mass m.
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=P

n-1

Fig. 2.7. Transverse vibrations in a linear lattice. The longitudinal components of the
spring tension forces acting on each mass are equal and opposite. Net force on
the mass is the sum of the transverse components.

Exercise 2.10. Consider plane transverse vibrations of the lattice. Show that,
within the approximations developed in Exercises 2.1 and 2.2 [(a) and/or (b)],
they lead to equations of motion similar to (2.20). Refer to Fig. 2.7.

2.2.3. The Interaction Eigenbasis

Let K = ||«,8,,] be the diagonal matrix representing K in its own
eigenbasis {$,}¥_ 1, {x,}¥_; being the eigenvalues. Letting f, be the coordinates
of f in this basis, Eq. (2.21) becomes

Mf, +cf, + ifu=F,, n=12...,N, (2.22)

which is that of a set of wuncoupled oscillators with spring constants x,,
n=1,2,..., N. As the solution of (2.22) was studied in the last section, we
only need to know explicitly the transformation linking the e- with the
[K-eigenbasis Y in order to translate the solutions of (2.22) into the solutions
of (2.20). This is easier said than done, so the remainder of Section 2.2 will
deal with a simple case where the eigenbasis of K is one which has been
studied before.

2.2.4. The Simple Equal-Mass Lattice

Consider the lattice in Fig. 2.5, where all masses and springs are equal,
the viscous and external forces are absent (C = 0, F = 0), and only first-
neighbor interactions are considered. As Kk, = k(8, n+1 + O,,m-1) and
k, = 0, Eq. (2.19) yields

Knm = —k(sn,m+l + sn,m—l - 28nm)9 (223)

i.e., the interaction operator is a multiple k of the second-difference operator
(Section 1.5),

K = —ka, (2.24)
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and the vector equation of motion (2.21) then reads
M — kif = 0. (2.25)
In the e-basis, this is represented by the N equations

Mfy = k(fos1 — 2fn + foo1)s n=12..,N, (2.26)

which tell us that the acceleration of the nth particle is proportional to the
curvature of the displacement coordinate around the nth position. In Fig.
2.7 this is manifest: the larger the angle between the (» — 1)—(n) and
(n)—(n + 1) springs, the greater the force and hence the acceleration in the
direction of concavity.

2.2.5. Uncoupling and Solution

Equation (2.25) in the ¢p-basis (see Section 1.4) appears simpler than
(2.26), since A is diagonal there and the component equations uncouple:

MFy — kA fo = 0, (2.27a)
A, = —4sin?(mm/N), m=12,...,N. (2.27b)

Equations (1.51) relate the normal coordinates { /,,}X - to the lattice displace-
ments {f,}¥-,. The general solution of Egs. (2.27) in terms of the 2N initial
conditions is thus of the oscillatory type [see Egs. (2.6)-(2.11) for ¢, I' = 0]:

Fult) = Gult — 1)]lte) + Gt — to)filto), (2.28a)
Gu(r) = wptsin war,  Gu(r) = cos wy, (2.28b)

W= (—kAa/ M) = 2(k/ M) 2|sin(mm|N)| = wy_n, (2.286)

where £,,(¢,) and £,(t,) are the ¢p-basis coordinates of the initial displacement
and velocity vectors f, = f(z,) and f, = f(z,). We have given an apparently
redundant absolute value to the last member in (2.28c); this will be seen to be
convenient when we exploit the identification m = n mod N. One case we
have ““overlooked” is the solution of (2.27) for m = N, as there Ay = 0 so
the Nth normal coordinate is that of a springless ““oscillator.” This case has
been referred to before in Exercise 2.6 and leads to a solution of the type
(2.17), i.e.,

Jult) = Fulte) + (¢ — to)fu(to), (2.284)

which can still be correctly incorporated into Eq. (2.28a) since for wy — 0 we
have Gy(7) - 7 and G(7) — 1.
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2.2.6. Green’s Operator of Time Evolution
The solutions (2.28) can now be integrated back to vector form as
£(1) = G(t — to)fo + Gt — to)f,, (2.29)

where G(7) is Green’s operator, represented in the ¢p-basis by the diagonal
matrix G(7) = [|8,,Gn(7)|, and G(r) = dG(r)/dr similarly. (Recall Exercise
1.29 where G explicitly denoted the case c = 0, M = 1, k = 1.)

Exercise 2.11. Show that the Green’s operator appearing in (2.29) and its
time derivative are self-adjoint and that they commute with A.

Exercise 2.12. Using the fact that f, and f‘o in (2.29) are constant, arbitrary
vectors, show that Green’s operator G(7) satisfies the lattice equation of motion
(2.25):

MG(7) = kAG(7). (2.30)
Exercise 2.13. Let Eq. (2.29) give the solution at time ¢ in terms of initial
conditions at time #;. The latter, however, may be due to still earlier conditions

at some time 7, < #;. Show that this implies that the Green’s operator must
satisfy

G(t — to) = Gt — 1)G(t, — to) + Gt — )Gt — to), (2.31a)
and, in particular, that
GO)=0, GO =1. (2.31b)

The subject of time evolution will be taken up in more detail in Section 2.6.

Equation (2.29), written in the e-basis, will provide us with the solution
of the original equation (2.26) for the displacements. Indeed,

F(0) = D Gunlt — 1)flte) + D, Ganlt — t)fults),  n=1,2,...,N,
" " (2.32)
where the coefficients are the elements of Green’s operator in the e-basis:
Gun(7) = (&n, G(7)e) = [FG(1)F'],m
= 2 FuGn)F?

= N~1> wi' sin wr exp[2mik(m — n)/N]
k
= N1 wj;!sin w,r cos[2nk(m — n)/N1, (2.33)
k
Grn(7) = N™1 > c0s wyr cos[2mk(m — n)/N]. (2.34)
k

Thus, although in working out the solution we slipped into the field € of
complex numbers and unitary transformations, in the end we see that if the
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2N initial conditions are real, since G,,(7) and G,.() are real functions,
the solutions f,(¢) are real, as one should expect.

Exercise 2.14. Verify that the special expression for Gy(7) causes no trouble
in (2.32)—(2.34) if we take care to make wy?! sin wyT = 7.

2.2.7. Properties of the Green’s Operator

The elements of Green’s matrix G,,(7) in (2.33) and its time derivative
(2.34) have several manifest properties: (a) G,,(7) and its time derivative are
functions of |n — m|. This embodies the principle of reciprocity: the effect on
mass n of a given initial condition at site m is the same as the effect on mass m
of that same initial conditions at n. (b) The effect, moreover, depends only on
their relative distance |[n — m|, not on their absolute position z or m. In other
words, the system is translationally invariant: If £(¢) is a solution with initial
conditions f, and f,, then the translated initial conditions R¥f, and R¥f, give
rise to the solution R*f(¢), as follows from the observation that R*G(r) =
G(7)RF. (In the ¢p-basis, both operators are represented by diagonal matrices.)
(c) Similarly, inversion through [, (and K; when N is even) of the initial
conditions produces a correspondingly inverted solution, as [, (and K;) also
commute with the simple lattice Green’s operator. The system is corre-
spondingly invariant under inversions. We must emphasize in (b) and (c) that
translational invariance and inversion invariance refer to the simple lattice
equations of motion and time evolution embodied by A and G(r), not to the
initial conditions, which may be arbitrary and not at all invariant under R¥
or [,. These observations do imply, however, that if a given set of initial
conditions has definite symmetry under some operation (as, i.e., [,f, = of,
and [f, = o f,, for ¢ = 1 or —1), then the resulting solution f(¢) will have the
same symmetry [i.e., 1,f(z) = of(¢)] for all time. We shall have opportunity
to use these facts at the end of next section in order to describe lattices with
fixed ends.

Exercise 2.15. Prove the preceding statements in detail.

The solution (2.29) to the simple lattice looks neat and compact. It will
serve us, however, to dedicate all of Section 2.3 to describing certain particular
solutions in the ““physical”” e-basis so as to get a firmer understanding of the
processes involved. This will be useful when we extend the treatment of this
section to more general lattices.

Exercise 2.16. Repeat the analysis of the simple lattice (Fig. 2.5) to include
viscous forces. Assuming they are equal for all particles in the lattice and using
the results of Section 2.1, prove that the generalization of (2.29) is

£(t) = [GT(t — to) + 2I'G (¢t — to)ifo + GV(t — to)fo, (2.35)
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where the Green’s operator GT(7) is represented in the ¢-basis by a diagonal
matrix with elements

G.'(7) = (wn?)~* exp(—I'7) sin wyT (oscillatory), (2.36)
T =c¢2M, w,® = [4(k/M) sin?(wm/N) — T'2]*/2, (2.37)
and corresponding expressions for the critical and overdamped cases.

Exercise 2.17. Consider the limit when damping is much larger than inertia,
so that ¢/2M = T' — o while ¢ and k remain finite. Refer to Exercise 2.8. In that

case, using the overdamped expression for (2.35)—(2.37), show that GT'(7), GT (1) —
0. The operator 2I'G"(7) remains finite, however, and (2.35) becomes

fu(t) = exp[—4(t — to)ke™* sin®(mm/N)] fulto), (2.382)

so that f(z) and hence f,(¢) stop depending on the initial velocity. The solutions
are exponentially damped and correspond to the vector equation

f(¢) = exp[(t — to)kc 1A (2,). (2.38b)
Compare with Eqgs. (1.72). The function (2.38a) appears in Fig. 3.5(a).

Exercise 2.18. As a continuation of Exercise 2.17, define the “total heat”’
of the damped massless lattice as

Q=>f. (2.39)

Using (2.38b), show that Q at time ¢ is the same as at time #,. Refer to Exercise
1.28.

2.3. Fundamental Solutions, Normal Modes, and Traveling Waves

The general solution of a coupled system represented by a simple lattice
was obtained in Section 2.2. Here we shall filter out the information which is
relevant and extendable to more general cases.

2.3.1. Fundamental Solutions

The expression (2.29) for ¢, = 0,
(1) = G()f, + G(t)f,, (2.40)

gives the state vector for the lattice at time # in terms of the initial displace-
ments f, and velocities f,. Assume the lattice starts from rest (f, = 0) with
the mth mass displaced by one unit (f, = &,). The ensuing time development
of the lattice is then given by the state vector

&"(t) = G(1)e, (2.412)
with components
5250 = (2., 8%(1)) = G.l(0), n=12,...,N, (2.41vb)
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given explicitly by Eq. (2.34). Assume now that the initial condition of the
lattice is f, = 0, f, = €, i.e., the mth mass is moving through its equilibrium
position with unit velocity. The corresponding solution state vector is
e™(t) = G(t)e, (2.42a)
with components
&,"(t) = (&0, &™(1)) = Grnl?), n=12...,N (2.42b)

[see Egs. (2.33)]. We shall refer to (2.41) and (2.42) as the fundamental
solutions of the N-point lattice. In Figs. 2.8(a) and (b) we have drawn the
solutions (2.41) and (2.42) for fixed m. The most general initial condition
fo = S fuEm fo = Omfu€n Will then give rise to a state vector

£(1) = D fuk™(t) + > fu€™(®), (2.43)

which is a superposition of the fundamental solutions (2.41) and (2.42).
Note that there are 2N parameters in (2.43): N for the components of f, and
N for those of f,. The set of solutions (2.43) thus fit a 2N-dimensional
vector space which will be seen in Section 2.6 to be the phase space of the
system. Meanwhile, we shall only point to the fact that there are 2N indepen-
dent solutions for the N-particle lattice and that the most general solution can
be expressed as a linear combination of them.

43

Fig. 2.8. Fundamental solutions for the eight-mass linear closed lattice. (a) The fourth
mass starts with unit elongation, and (b) the fourth mass starts with unit
velocity. All other fundamental solutions are translated versions of these,
numbered modulo 8. Note that for small ¢ a *“propagation velocity™ for the
disturbance can be seen and loosely defined. As the spring mass is zero, how-
ever, every mass in the lattice feels the disturbance instantaneously. (Refer to
the discussion in Section 5.3 for the infinite lattice.)
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Exercise 2.19. Show that the set of fundamental solutions is nof orthonormal
for all . Green’s operator is self-adjoint but no# unitary.

2.3.2. A Real Orthonormal Basis

Figures 2.8(a) and (b) are neat, but the information they contain is
quite structureless. Since the uncoupling of the lattice equations in Section 2.2
was the key step in solving the system and the solutions were those of single
harmonic oscillators, we should be asking for fundamental solutions in the
G-basis, that is, for the time development of initial conditions given by
f, = ¢, and/or f, = ¢,,.. The solutions due to such initial conditions would
be complex, however, since from (1.52), (g,, ®,) = Fn,. To have real initial
conditions still associated with the ¢-basis, we can use the set of vectors ¢, *
defined in (1.115), which we write compactly as

(N — 1), Nodd,
/2, N even,
where we use here and below the convention that the subscripts are con-
sidered modulo », and
¢ -

&nt =1, except é,* = 2712 and, when Neven, &, = 2712

On* =27 (Qn £ @_p), m=0,1,.. (2.442)

Il

i, except& =0,
B (2.44b)

These vectors also constitute an orthonormal basis (see Exercise 1.50), which
we shall call the ¢ *-basis for short.

Exercise 2.20. Show that the vectors (1.115) have real coordinates in the
original e-basis:
(En, Pmt) = En*(N/2)~ 12 cos(2mmn/N), (2.45a)
(&n, Pn™) = (N/2)~ 2 sin(2mmn/N). (2.45b)
Note that (g, @o*) = N Y2 and (g,, @x) = N~2(—=1)"

2.3.3. Normal Modes

We define state vectors analogous to (2.41)-(2.42) whose initial displace-
ments or velocities at 7, = 0 are the vectors of the ¢ *-basis:

¢4 (1) = G(t)pn*, (2.462)
@"*(1) = G()pn*. (2.46b)

Solutions (2.46a) start from rest with maximum displacement, while (2.46b)
start with the lattice moving through the equilibrium shape. We can find the
form of the lattice vibrations represented by (2.46) by calculating

PEE(2) = (n, D)) = g (& @)@k G(DP*)

= £n*27V2[FGo(t) £ Fo_ G _n(0)] (2.47)
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and similarly for ¢**(¢). Now F, _, = Fy, and from (2.28b) and (2.28¢c) we
can see that G,, = G_,, and similarly for its time derivative. Hence, after a
short calculation the lattice solutions (2.46) are obtained as

¢nt(t) = £, (2/N)Y2 cos(Qmnm/N) cos wpt, (2.48a)
on=(t) = (2/N)Y2 sin(2mnm|N) cos wpt, (2.48b)
PRt () = £, (2/N)Y2 cos(Qnnm/N)wy, ! sin wpt, (2.48¢)
o= (t) = (2/N)'2 sinQenm/N)wy * sin w,t. (2.48d)

These have been plotted in Fig. 2.9. In spite of the small complication of the
&s and the apparent proliferation of indices, the picturing of the solutions—
the normal modes of the system—is rather simple: they are standing waves of
the lattice. They are also separated functions of n and #; that is, they have the
form ¢,(¢) = v(n)7(¢), the waveform v(n) being modulated by an oscillating
function 7(z).

Exercise 2.21. Check that there are indeed 2N different normal modes in
Eqgs. (2.48).

Exercise 2.22. Verify that
(1) = —wnPem(1). (2.49)

Exercise 2.23. Suppose we had started with the N lattice equations of motion
(2.26) and assumed that the solutions f,(z) were separable functions v(n)r(t).
Substituting this ansatz into (2.26) and following the usual procedure of separation
of variables, show that one arrives at 7(¢) = ¢ exp(iwt), where the —w? are the
separation constants, which are solutions of the eigenvalues problem kAv =
— Mw?v. If this is solved and linear combinations taken to ensure the reality of
the solutions, Egs. (2.48) will be obtained.

2.3.4. The Brillouin Angular Frequency Diagram

The most general initial condition of a vibrating lattice, in the same form
as (2.43), can be expanded in the ¢ *-basis for displacements and velocities
with coefficients f,,* and f,*, respectively [m and + taking the values
allowed by (2.44)], giving rise to a state vector

£(1) = D fu*@™5(t) + D furom* (D). (2.50)

In the form (2.50), the solution f(¢) is decomposed into sinusoidal waves such
as those in Fig. 2.9, each set of ¢’s with the same value of m vibrating with its
own angular velocity w,, [Eq. (2.28c)]. The ¢™s are one-quarter period behind
the ¢™s so they represent essentially the same waveform of the lattice. A very
handy representation of the allowed angular frequencies w,,, very much used



60 Part I - Finite-Dimensional Fourier Transform [Sec. 2.3




61

Chap. 2 * Uncoupling of Lattices

Sec. 2.3]

*901118 9[OYM 9Y} JOJ UONB)OI PIWIOJIPUN SIQLIISIP SPOW [)0IdZ dY ], ‘uonesuo[d
0I9Z )M 1IB)S A9U) INQg ‘saInSy oy} ul pojordop saUO dY) O} JB[IWIS dIB SIPOW [BULIOU ,d OUJ, ‘Sossew oY)
I0J A110019A J19yS31Y 9FBISAL UR [IBJUD SOABM w-IdYIIY Jey) Uaas SI 1] “[4:(%/) JO syun ul] $ £q padeds sjoysdeus
awir) Juanbasqns 03 I9JOI SA[OIIO PUL SAUI[ PAYIO( "SI[OIID AQ PIredIpul SUIQ SISSBUW [BNIOL ¢/ PUR () UIOM]Iq U [BAI
I0J payold uedq sey odeys 901)1e[ AU "901))B[ SSEW-UAIS B JOJ (soaem Suipue)s) (& pue s ,d sopow [BWION 6T “S1g

che

NN
Nz N\

O O
N/




m
. P S R R S
—t—t ——t—t e Rt e S
7 N+l 0 =N
S
I “m
c

I i A I } i I y I : 4 1 L 4
T T T T T T T T T T T T

-2 (N 0 +(N-1)

Fig. 2.10. Brillouin frequency diagram plotting the angular frequency w, as a function
of m: (a) the repeating Brillouin zones; (b) and (c) the central (first) zone for
N even and odd. Crosses mark the integer-m allowed frequencies. Note that
all w,’s are doubly degenerate (for w.) except for wo, and, if N is even, wyjz.
This is the difference between (b) and (c).
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in solid-state physics, is the Brillouin diagram, Fig. 2.10, which plots the w,,
of @™* as a function of +m, taking the interval in m to be centered around
m = 0. The first Brillouin zone for odd N = 2v + 1 extends over m =
—v,—v+1,...,—1,0,1,...,v — 1,v. When N = 2V’ is even, it extends
over m=—v +1,...,—1,0,1,...,» — 1,»'. Beyond the ends of these
intervals are the second, third, etc., Brillouin zones, which in the case of a
one-dimensional lattice are equivalent to the first one. Except for m = 0 and
NJ2 (if N is even), two values +m correspond to the same value of w,, the
angular frequency.

Exercise 2.24. Refer to Section 1.7 and note that the ¢™=(¢) solutions have
definite parity under [, i.e.,
lo™*(2) = £ @™*(¢) (2.51)

for all 7. Note that instead of the ¢ *-basis vectors we could have used any of the
eigenbases of A and [, as given in (1.118) and still obtained real solutions. The
sine—and cosine—functions of n would have their arguments displaced by
2nin/N.

2.3.5. Periods and Wavelengths
The period of each set of ¢™s is
Ty = 27w, = (M[k)?=[|sin(mm/N)|. (2.52)

As these periods are in general incommensurable, there will be no periodicity
of the total solution f(z). The normal modes or combinations of the same
m-set are the only time-periodic solutions of the vibrating lattice. A repre-
sentation similar to the Brillouin diagram is shown in Fig. 2.11. Regarding
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Fig. 2.11. Brillouin diagram for oscillation periods.
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the wavelength in units of interparticle separation, it can be seen from (2.48)
to be

A, = Njm, 2.53)

i.e., there are m wavelengths in the lattice circle. In Fig. 2.12 we plot (2.53) in
the Brillouin manner, although A, is not a periodic function of m. Had we
decided to take N/(m + N), N/(m + 2N), etc., we would have been left with
the same description of the discrete lattice points; see Fig. 2.13. Some observa-
tions on particular normal modes are the following: (a) When N is even,
@¥2%*(¢) and its time derivative [no ¢¥2~(¢) exists] have the largest angular
frequency, wy;, = 2(k/M)*?, and the smallest period, Ty, = #(M/k)*'2. The
lattice vibrates in such a way that each mass moves in a sense opposite to that
of its first neighbors and carries the smallest wavelength: Ay, = 2 inter-
particle separations. (b) When N is odd, the highest frequency corresponds to
m = £ (N — 1)/2, as shown in Fig. 2.10. Again, they have the smallest period
and wavelength. (c) The “normal mode” m = 0is a bit of a fraud since it does
not oscillate at all. Formally, for w, = wy we had set (w,) = sin wyt = ¢, so,
as drawn in Fig. 2.9, %) = N ~Y21, °(t) = N ~'/2, It represents a uniform
displacement of the full lattice, which by itself is not too interesting. The
period and wavelength turn out to be infinite.

Exercise 2.25. When the lattice has an even number of masses one can
define an eigenbasis of the K, operator proposed in Exercise 1.54 as suggested in
(2.51) for ly—or any K; as generalized in Exercise 2.24. Explore the possibilities
in this direction. These will be used at the end of this section.

m

|
e T

Fig. 2.12. Brillouin diagram for wavelengths.
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Fig. 2.13. Multiple wavelength degeneracy: ¢™*, ¥*m= . and ¢ ™% @V¥-m* |
describe the same state for the actual lattice masses. All the relevant informa-
tion is thus contained in the first Brillouin zone.

2.3.6. Traveling Waves

In exploring the fundamental solutions and the normal modes we
examined situations in which the initial conditions were either nonzero
displacements or nonzero velocities. There is a third set of interesting solu-
tions, traveling waves, where both sets of initial conditions are nonzero albeit
correlated. From the trigonometric functions appearing in the normal modes
(2.48) we can see interesting combinations. Let

Q") = (wn) T'P™ (1) F @™ (2), (2.54a)
(1) = F @ (t) + wae™(2), (2.54b)

where the ranges of m and == will be detailed below. The lattice vibrations
described by these state vectors (which are solutions of the lattice since the
@™*’s are too) are given by their coordinates in the e-basis, which can easily
be found from (2.48):

Pr2(t) = £, (2/N)Y2(w,) "t sinQanm/N F wnt), (2.55a)
Gr2(t) = F £, (2/N)2 cosQmnm[N T wpt). (2.55b)
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The dependence of ¢7< on #n and ¢ is in the form 2znm/N F wyt, i.e., it is
constant for

n = + No,t/2mm. (2.56)

With advancing time, the sinusoidal lattice shape represented by ¢@<(z) will
shift to the right and left, respectively, thus describing a right- or left-moving
waveform. See Fig. 2.14.

2.3.7. Propagation Velocity
The velocity of this traveling wave is, from (2.56),
V= = + Now,[2mm 2.57)

in units of interparticle separation per unit time. The wavelength of the
traveling waves is still (2.53), as this is the characteristic of the m-set of states.
In Fig. 2.15 we have plotted a la Brillouin the absolute value of the velocities
(2.57) as a function of m. This will also clarify the ranges and ““extreme”
cases of the indices m and = in (2.54)—(2.55). (a) When N is even, we saw that
only "2+ existed, so here we conclude that "2~ = —¢"/2<, Inspection
of (2.55) for this case shows that this “traveling” wave has no definite sense
of motion, although its velocity (2.57) is vy, = 2(k/M)*?/z. It is the slowest
of the waves. (b) When N is odd, the slowest waves correspond to m =
(N — 1)/2. For all other m’s down to m = 1 both left- and right-traveling
waves exist until (c) for m = 0, @ = —®” = °*. Again this “wave”

[Vm|

[

Fig. 2.15. Brillouin diagram for velocities.
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is a freak, as it has no sense of motion, although it defines an upper limit for
propagation velocities in the lattice. From (2.28¢) and for m — 0 this is

vo = (k/M)'? (2.58)

in units of interparticle separation. Note that this quantity depends only on
the lattice parameters of mass and spring.

Exercise 2.26. Show that the traveling waves satisfy
a
o Q" = +ow, RV, o= + 1. (2.59)
These are the ‘‘square roots” of the second-order differential equation (2.49).

Are there ‘“‘square root’’ forms for the lattice equation of motion (2.25) for
solutions consisting only of right-moving (or left-moving) waves? Why not?

3

2.3.8. Initial Conditions and Dispersion

Again, the most general state vector describing the lattice can be written
in terms of traveling waves as

() = 2 fiFm=2() + 2, h:=0"(). (2.60)

This is the analogue of Egs. (2.43) and (2.50) for the traveling wave ¢p<-basis.

Exercise 2.27. Find explicitly the linear combination coefficients in (2.60) in
terms of the initial displacements and velocities of the lattice points.

For any set of linear combination constants, Eq. (2.60) tells us that any
vibration state of the lattice can be decomposed into 2N traveling waves.
As each m<-set of waves travels with its own velocity (2.57), any initial shape
of the lattice, even if it is composed only of waves traveling in one direction,
will be changed: different constituent waves travel with different velocities.
A discrete lattice therefore cannot carry definite “signals” other than pure
sinusoidal forms, as their shape is eventually lost. Such media are called
dispersive.

2.3.9. Lattice Models for Dispersive Media

Since crystals are physical systems modeled by lattices with a very large
number of masses N, one can ask how and when the dispersion of signals
appears. Note that the velocity diagram, Fig. 2.15, has the same shape for all
N, except for the “actual” points corresponding to integer values of m,
which come closer together as N increases. The curve v, for very small
values of m/N, can be approximated by the constant v, in Eq. (2.58). If our
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signal is composed only of low-m partial waves, whose wavelengths are very
much larger than the interparticle separation in the lattice, the signal will
propagate, to a good approximation, with no loss of shape, as all constituent
waves have the same propagation velocity. In this linear approximation,
dispersion is absent. The dispersion of signals—mechanical or electromag-
netic—gives some information of the “granularity” of the medium. This
statement still holds (with the appropriate adaptations) even when the
“microscopic” model of a system which “in the large” satisfies the wave
equation is not that of a vibrating lattice. Sound propagation in gases or
amorphous materials, for instance, can rely on different microscopic models.

As the preceding discussion may suggest, when a mechanical lattice is
proposed as a microscopic model for a system, the relevant information is
mostly that of the spectrum of oscillation frequencies, transmittable wave-
lengths, and the like. There is little experimental content in specifying arbi-
trary initial conditions or following the vibration of individual atoms. In
this sense, the Brillouin diagram and its three-dimensional version for
various crystalline lattices contain much information, and accordingly we
shall time and again cast our results in these terms.

Exercise 2.28. Assume the lattice is damped. Follow the discussion in this
section for this case. Note that little is changed except for the fact that the
oscillation frequencies w,, become complex. Generally, there will be overdamped
as well as oscillatory solutions, the former ones for small values of m and the
latter ones for large m’s.

Exercise 2.29. Consider a one-dimensional lattice with fixed ends. This can
mean that the first and last masses are held fixed [Fig. 2.16(a)] or that the mid-
points of two springs are constrained [Fig. 2.16(b)]. Show that the ““method of
images’’ appears as a natural way to phrase the problem: Assume that a free
N-point lattice (N even) has initial conditions which are odd under inversions
through [, or Ko, as then, for all #, the resulting state vector f(z) will have the
same property. If [,f(z) = —f(¢), masses N and N/2 are fixed, while if Kf(z) =
—1f(¢), the midpoint of the springs joining the mass pairs (N,1) and (3N, 1N — 1)
pass through the equilibrium position. The actual lattice (Fig. 2.16) is one-half
of the proposed free lattice.

Exercise 2.30. Examine the allowed normal modes which can be present in
the above “extended’’ lattice: In Eq. (2.50) only f;,~ and f,,~ can be nonzero for
Fig. 2.16(a) and analogously (see Exercise 2.24) for the lattice in Fig. 2.16(b).
In terms of traveling waves, show that only combinations of ¢™~ + ¢™ are
allowed to appear in the former. What about the corresponding combinations in
the latter ?

Exercise 2.31. What happens with the Brillouin and similar diagrams for
the lattice with fixed ends? Show that over the ‘““physical’’ half-lattice ortho-
gonality and completeness for the odd modes still hold.
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Fig. 2.16. Lattices with two fixed (a) masses, (b) string midpoints. These can be accom-
modated into a lattice with double the number of masses with restrictions on
the allowed vibration modes. Half of the lattice will serve as a ‘“negative
mirror image”’ of the original.

Exercise 2.32. We can consider lattices where the two endpoints are free.
See that this is well represented, as before, by a closed lattice whose state vectors
are even under reflection by [,. A similar analysis follows.

In this part we have for generality concentrated on the description of
closed lattices and relegated the study of the fixed-endpoint system to the
foregoing exercises. In Part II, the study of the vibrating string will be done
almost exclusively on the fixed-endpoint problem.

2.4. Farther-Neighbor Interaction, Molecular and Diatomic Lattices

The concepts developed in Section 2.3 for the simple lattice with only
first-neighbor interactions and equal springs and masses will be applied now
to systems where each one of these restrictions in turn is lifted in order to
examine the features which characterize these extensions.

2.4.1. Farther-Neighbor Interaction and Uncoupling

Lattices with farther-than-first-neighbor interactions (see Fig. 2.17) are
certainly relevant in crystallography where the interaction between the
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Fig. 2.17. Mechanical model of a linear,
closed lattice with first- and
second-neighbor interactions.

lattice atoms is electromagnetic and a first-neighbor “spring” model is at
best only a good approximation. When describing the interaction term in the
lattice equation of motion [Egs. (2.19)-(2.22)] we allowed for pth neighbor
forces through springs of Hooke’s constant %, ,., and noted only that
knm = knn is the requirement of action-reaction equality. Here we shall
restrict the lattice to have the same Hooke’s constant between all pth neighbors
(as shown in Fig. 2.17 for p = 1 and p = 2) so that k, ==k, , ., is indepen-
dent of n. The simple lattice has only k; # 0, while in the general case we can
consider k, for p from zero (each mass attached to its equilibrium position
by a spring k) up to p = w(N) [#(N) = (N — 1)/2 for N odd, and #(N) =
NJ2 for N even, taking care to note that in this case fwo springs ky;, join
opposite masses]. In this general case, the interaction operator K of Eq.
(2.21) is represented in the e-basis by a matrix K with elements

n(N)

kam = —Kin-mi + 28um D, K. (2.61)
p=0

[See Eq. (2.19), recalling that row and column indices are taken modulo N.]
The matrix K therefore has entries kp = ko, + 2 22 k, along the main
diagonal and —k, on diagonals p units on both sides of the main one.
For representation purposes it is convenient to write K in terms of the
dihedral matrix representatives [Eq. (1.88)] as

n(N)

K = kil — > k,R” + R™?) (2.62)
p=l

and correspondingly for the operators themselves. In this way, it is easily
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seen that K is represented by a diagonal matrix in the ¢p-basis, since the R’s
are so represented [Eq. (1.91)]. Quite simply, then,

~

(N)
RBon = amn{ka =S kyfexp(mipm|N) + exp(—zm'pm/N)]}
p=1

n(N)
= Smn[kz, -2 k, cos(RQmpm/[N )]
p=1
(N)
= Smn[ko +4 >k, Sinz(npm/N)] = Sk (2.63)
p=1

2.4.2. Brillouin Frequency Diagram

The lattice then uncouples into N oscillators with constants ,, == Kym
[Eq. (2.22)], and the allowed oscillation frequencies of the system are given by

n(N)

Wy = (kM2 = 2[k0/4M + Zl (k,/ M) sinz(mpm/zv)]”2 (2.64)

[compare with Egs. (2.27) and (2.28)]. The development of Sections 2.2 and
2.3 applies verbatim to this lattice with only a change in the values of the
allowed angular frequencies (2.64). A Brillouin diagram for this lattice is
shown in Fig. 2.18.
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Fig. 2.18. Brillouin frequency diagram for a lattice with first- and second-neighbor
interactions through spring constants k; and k.. Curves are plotted for
various ratios kj:ks. If ki:ks :: 1:0, we obtain the first-neighbor case (Fig.
2.10). In the other extreme, if k;:k5 ::0:1, we obtain two uncoupled lattices
of the former type, which results in a doubling of the simple lattice first
Brillouin zone.
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Exercise 2.33. Note that if k, # O the zeroth mode becomes a true oscilla-
tion mode. What is the effect on the Brillouin diagram in Fig. 2.18?

Exercise 2.34. Describe the fundamental solutions, elements of Green’s
matrix, and normal modes of this lattice.

Exercise 2.35. Find the propagation velocities of the traveling waves.

Exercise 2.36. Note that instead of expanding K in powers of R as was done
in Eq. (2.62), one could expand it in powers of A. For the case of first- and
second-neighbor interaction only, this leads to K = —(k; + 4k3)A — kA2,
Arrive at the result (2.64) for this case and the more general pth-neighbor inter-
action case.

Exercise 2.37. Suppose only k,; # 0. Show that if N is even the lattice
uncouples into two N/2-mass lattices. What if N is odd?

Exercise 2.38. Introduce viscous damping into the problem.

2.4.3. Molecular Lattices

We consider now a lattice with two kinds of first-neighbor interaction:
one with Hooke’s constant k; between masses N and 1, 2 and 3, etc., up to
N — 2and N — 1 (note that N is even) and another with k, between 1 and 2,
etc.,upto N — 1and N, as in Fig. 2.19. Such a system is said to be a molecular
lattice.

Fig. 2.19. Molecular lattice. Springs
with constants k; and k.
alternate between the
masses.
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The interaction operator will no longer be represented by a matrix
constant along the diagonals as in (2.62) but, from (2.19), by

ky + kg —kg 0. -k
—ky Btk =k "0
K = ki kit ky —ky . (2.65)
0. ks . =k
-k, 0 ety Ky o+ ks

In terms of simpler matrices which have appeared before [Egs. (1.67a) and
(1.88a)], we can write (2.65) as

K = (k; + k3)1 — ky(E;R + R7'E;) — ky(E;R™! + RE;) (2.66)

and correspondingly for the represented operators. Manifestly, (2.65) is a
hermitian matrix, while in (2.66) the hermiticity is also evident, as E, is
hermitian and R unitary. The dihedral symmetry Dy of the original simple
lattice is broken, and we are left only with invariance transformations which
are powers of R? and the K’s (Section 1.6) which by themselves form a
subgroup of Dy. The odd powers of R and the [’s will exchange springs k;
and k.

2.4.4. The Interaction Matrix and First Uncoupling

Following earlier treatments of the Dy-symmetric lattices, let us write
the equation of motion Mf + Kf = 0 in the ¢-basis. In this we can aid
ourselves with Egs. (1.67), which have four diagonal blocks, and (1.91),
which is completely diagonal, in order to arrive, after some calculation, at

K = ( 2ky + ko) |8y sin®(am/N)| i(ka — k1)||8n sin(2mm/N)|

_I(kz = kl)“ Smn 51n(27-rm/N)[| 2(k1 + k2)”8mn COSZ(#}’”/N)”), (267)

where |8,»(n)| are N/2 x N/2 diagonal submatrices with »(n), n =
1,2,..., N/2, along the diagonal. The matrix (2.67) is thus hermitian, as it
should be, and composed of four diagonal blocks. The Fourier transform has
failed here to produce a completely diagonal matrix. It has, however, con-
siderably simplified the problem since the original equations of motion
Mf, = — 3 Ku.fr were fully coupled, whereas now Mf,, = — Sy K /i, due
to the form (2.67) of K, consists of N/2 uncoupled pairs of equations. These
are
‘ Mfm = —2(ky + k2) sinz(ﬂm/N)fm — ks — ky) Sin(z‘”m/N)fm+N/2,
(2.682)

Mfm-l-le = i(ky — k1) Sin(2ﬂ'm/N)f,,, — 2(ky + k) cos® ("Tm/N>fm+N/2,
m=1,2...,N2—1, (2.68b)
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Fig. 2.20. ““Extended” Brillouin diagram for the frequencies of a molecular lattice of N
masses where (a) N/2 is odd (N = 18) and (b) N/2 is even (N = 16) for a ratio
ks/ks = %. The dotted line represents the Brillouin diagram of an equal-spring
lattice. The allowed frequencies, roots of Eq. (2.70) [wn* ~ (—an*)'?; see
Eq. (2.80)], thus become the double-period *“ optic’ and ‘““acoustic” branches
of the diagram.
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and

Mf.‘z.wz = —2(ky + ko)fujas Mfu = 0. (2.68¢)

Notice first that Egs. (2.68c) correspond exactly to (2.27) for m = N/2 and
m = N for a simple lattice with spring constant k, = (k; + k,)/2. The
solutions will be given then by Eqs. (2.28) for these values of m and k, so we
can start drawing our new Brillouin diagram for the molecular lattice by
fixing these two values of A;, eigenvalues of —k; K. See Fig. 2.20 for m = 0
and m = N/2, the dotted line representing the simple lattice with k,:=
(k1 + k3)/2.

2.4.5. Complete Uncoupling

For Egs. (2.682)-(2.68b), some further uncoupling is necessary: using
the A,, m = 1,2, ..., N, eigenvalues of A, we can write them as

MEm = Kmfom (2.692)
with

fow o ( o )
fm+N/2

T ( An i(ks/ko)AnAm s wj2) '
_i(ké/ka)()\m)‘m+NI2)1/2 Am+N/2
where k; = (k; — k;)/2 and k, as before. The 2 x 2 hermitian matrix

A™ can be diagonalized exactly [see Egs. (1.119) and (1.120)], obtaining for
its eigenvalues

O‘mj: = (Am r Am+Nl2)/2 i {[(’\m = )‘m+Nl2)/2]2 + (kd/ko‘)2AmAm+N/2}1l2
= —2 + 2[cos?(2am[N) + (k;/k,)? sin®(2mm/N)]*/2
= ar\inz-w (2-70)
Comparing with the equal-spring system (k; — 0), we recognize that «,,* —
Am = Ay_m and o, —> Ayja_m = Ayiz+m- Reflection symmetry under the
exchange m <> N/2 — m holds from (2.70). For m = 0, the cases (2.68c) are
also correctly reproduced in (2.70). We can thus denote the eigenvalues of

—K as kA, m = 1,2,..., N [in analogy with those of A; see Eq. (2.27b)],
where

No= Myem= 0 = atia_m, (2.71a)

), (2.69b)

)‘;V/2—m = A;V/2+m =ap = al;/2—ma
N/4 — 1 for N/2 even,
m=0,1,2,...,{ / /

(N — 2)/4  for NJ2 odd, (2.710)
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and

Mz = s, Asyje = oy, When N/2 even. (2.71¢)

2.4.6. Oscillation Frequencies and Shifts

The meaning of the rather involved numbering used above should be
apparent in Figs. 2.20(a) and (b) for odd and even N/2, respectively. The
spectrum of KK modifies that of —kA in that (a) the eigenvalues A;, divide into
two sets: those due to the «*’s and those due to the «~’s, as

0 =2 < |an®| < 2= 2lkslks| < 2 4 2|ko/ks| < |an™| < [Avia] = 4;
(2.72)
in between, there is a gap of height 4|k;/k,|; (b) the «~’s raise “wings,”
while the «*’s lower them by the same amount:

Ot — Ap = Ayjgm — 0y~ = 0. (2.73)

The slope of the curve for A, in Fig. 2.20 remains positive for m between
0 and N/2 and vanishes for m = 0, N/4 and N/2. The inequality (2.72) holds
for all values of |k,/k,|, preventing the “wings” from topping Ay/s.

Exercise 2.39. Show that for small |k,/k,|
tm® — A =~ (ksfko)? sin?2mm/N). (2.74)

Exercise 2.40. When one of the springs vanishes (k; — 0) we are left with
NJ/2 simple oscillators. What happens with the spectrum of K?

2.4.7. Optic and Acoustic Modes

The eigenvectors of the submatrix A™ which involves the m and
(N/2 + m) rows and columns of the interaction matrix K will now be found.
For

- X
Amxm= — amixmi’ xmE = me | (275)
X2
the ratios of the components can be conveniently written, using (2.69b),
(2.70), (2.73), and identities between the A’s, as

x5+ SR A ~ka )‘N/2—m — Om X1~

~in= s = T S inGemIN) ~ 'k, 2 sin@emiNy ~ x> &0

where 0 < p, < 1. In this form it is manifest that as the springs become
equal (k; — 0, p,, —0), x™* has a vanishing lower component and x"~ a
vanishing upper one. In this case £,,¢, and fy, . y/2@m+x/2 in (2.69) give, for
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their coefficients £,(t) and f,,, 2 (¢), uncoupled differential equations. In
general, however, the eigenvectors of the molecular lattice will be a super-
position of ¢, and ¢,, . 5o With the ratio (2.76). We can thus define, corre-
sponding to the eigenvalues —k,«,* of the interaction operator,

q)m+ = x’1"+(Pm a4 x'2n+<Pm+N/2 = xT+((Pm - ipm(Pm+Nl2) fOI' Otm+, (2773)
'-l)m_ = x?—‘?m -+ xrzn—“Pm+N/2 = xé"_(—ipmme e (Pm+N/2) for Cp (277b)

which constitute an orthonormal basis for #™¥ once the proper coefficients
x7* and x%~ are determined:

Xt = (1 + pu®)~Y2 = [x57]. (2.77¢)

[To keep the index bureaucracy straight, we remark that the range of indices
in (2.77) follows that in (2.71) and that in the case m = 0 or N/2, p,, is un-
defined, as we have only ¢,* = ¢y and Y53 = @y.5.] Expanding now the
sought for solution f(¢) in terms of the Y *-basis (2.77),

f(t) = zifm,i(z)xpm*, 2.78)

the equation of motion for the molecular lattice [Eq. (2.21) with the inter-
action matrix (2.65)] uncouples completely as

Mf—:r,u,i -+ kvamif—m,:& = 0. (279)

Its solutions were worked out before in Section 2.1 and are of the purely
oscillating type (2.7), with angular frequencies

on* = (ko/ M)"(—en*)*2. (2.80)

2.4.8. Brillouin Diagrams

We have drawn the Brillouin diagram corresponding to (2.80) in Fig.
2.21, where, as is customary, only the range of m between + N/4 is represented.
Figure 2.21 shows that the oscillator frequencies divide into two sets: the
so-called acoustical band for the w*’s, which involves low frequencies, and the
optical band for the »~’s, which involves a range of higher frequencies. They
are separated by the gap which is called the stopping band. This nomenclature
stems from solid-state physics and refers to the fact that in actual crystals the
frequencies correspond, respectively, to mechanical acoustic vibrations and
electromagnetically induced oscillating fields in the optical range which the
crystal is able to carry or transmit. It is opaque for frequencies outside these
bands. Electric circuits acting as low-pass or high-pass filters work on the
same principles.
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1 ks/kg=1.

-

Fig. 2.21. Usual Brillouin frequency diagram for a molecular (and diatomic) lattice
extending on integer values within + N/4. It has been plotted for various
values of k;/k,. If this ratio is zero, the simple lattice diagram is regained; on
the other extreme, if k; = 0, the lattice breaks up into N/2 two-mass dumbbells.
As each has only zero and its natural oscillation frequency, we obtain two
clusters of N/2-fold degenerate frequencies.

2.4.9. General Description of the Solutions

In spite of the rather lengthy derivation, the orthonormal ¢ *-basis in
Eqgs. (2.77) is clearly the “natural” basis for the description of the molecular
lattice. Most of the developments of Section 2.2 and 2.3 follow unchanged
as follows: (a) Once the solution for the coordinates 7,,(¢) is found in terms
of initial conditions, it assumes precisely the form (2.28) in terms of functions
G,(7) and their time derivatives, where the proper oscillation frequencies
(2.80) appear. These constitute the  *-basis representative of the self-adjoint
Green’s operator G(7), whose expression in other bases—notably the “ physi-
cal” e-basis—can be calculated leading to the general form (2.29) of the
solution. (b) Fundamental solutions, for initial conditions of single vectors in
the e-basis, can be found. (c) The basis vectors ¢, * do not have purely real
coordinates in the e-basis, so in order to produce normal modes we must find
a more appropriate basis. We can consider an eigenbasis of K, (the dihedral
operator, using the results of Exercises 1.54 and 1.57) and replace the ¢,,’s
in (2.77) by the ¢;*’s of that basis. We can also build real eigenvectors out
of (2.77), recalling that complex conjugation in the ¢-basis is defined through
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@ = Py_n. Consideration of initial conditions given by single vectors in
this real basis will lead to normal modes as (2.48) with the new w,,’s and two
trigonometric summands in place of one.

Exercise 2.41. Find explicitly the unitary transformation linking the e- and
the Y =-bases.

Exercise 2.42. When obtaining the nth coordinate in the e-basis of ¢, *, you
will notice that they behave like exp(—2mimn/N) times [l — (—1)"p,] for the
acoustical band eigenvectors and like the same function times [ —ip,, + (—1)*] for
the optical band eigenvectors. In the latter modes, then, first neighbors oscillate—
on the average—on opposite sides of the equilibrium line, while for the acoustical
modes they tend to be on the same side. See Fig. 2.22.

Exercise 2.43. Will the Green’s matrix in the e-basis be an even function of
|[n — m| as it was in (2.33)? What should be its main characteristics ?

Exercise 2.44. Can you find an eigenbasis related to (2.77) which is also an
eigenbasis of [,? Why not?

Exercise 2.45. Consider finding fraveling wave solutions for the molecular
lattice.

Exercise 2.46. Introduce viscous damping into the problem.
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Fig. 2.22. (a) Acoustic, and (b) optic oscillation modes for a molecular lattice with 16

masses (circles). Springs k; and k. are represented by broken and unbroken
lines, plotted for real values of the abscissa. The spring ratio is ks/k, = L.
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Fig. 2.23. Diatomic lattice. Masses M;
and M, alternate.

2.4.10. Diatomic Lattices

The diatomic lattice (see Fig. 2.23) is a lattice with two alternating masses
M, and M,. It has several features in common with the molecular lattice and
some differences as well. The intertial operator was up to now a multiple M
of the unit operator [Eq. (2.21)]. For the diatomic lattice, it will be represented
in the e-basis by a diagonal N x N matrix (N even) with A, in the odd and
M, in the even position. In terms of matrices we have introduced before
[Egs. (1.67)], we can write

M,
M = M, = M\E, + M,E,, (2.81)

0 M,

and the (undamped) equation of motion can be written as

f + M-Kf = 0. (2.82)

2.4.11. Diagonalization of a Nonhermitian Matrix

Our procedure up to now has been to find the eigenvectors and -values
of the interaction operator in order to find a basis of ¥~ where the lattice
equations uncouple. The problem with Eq. (2.82) is that MK is not a
hermitian operator. Although the two factors are hermitian, they do not
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commute. Yet MK is not too “far” from being hermitian; in the ¢-basis
it is represented by

(M,E, + M,E,) K = (M{'E, + M;'E,)K

_ (:’"’a”smn"m” /~“r§“ 8rrme+N/2||) {H’a = (l"l_l o /~L2_l)/25

~ ~ (2.83)
e ” 8mnKm” :U'a” 8rnnKn'L<}-N/2“ Mo = (PLZ = M1 1)/2,

where we have used the result (1.67) on the E; and Eq. (2.63) for the form of
the general pth-neighbor equal-spring interaction matrix. We are representing
an N/2 x N/2 diagonal matrix with elements v(n) by ||8,,,»(m)| asin Eq. (2.67).
All 2 x 2 submatrices formed by taking the intersections of the nth and mth
row and column are diagonal and hermitian except when m = n + N/2.

Exercise 2.47. Show that M~[K, in its e-basis representation, has two
N/2 x N/2 hermitian submatrices: those constituted by the even- or odd-rowed
and -columned elements of the original matrix.

The nondiagonal 2 x 2 submatrices are

K(m) - (:ua’(m nu‘éKm+N/2) — ,uaklﬁ(m). (284)

HoKm  HoKm+Nj2

Their eigenvalues can be found by applying (1.120) and extracting the factor
/‘"akl :

klIBmi = (Km 7 Km+N/2)/2
+ {[(km — Km2)21 + (/o) kmkm + wi2} 2. (2.85)

The spectrum of (2.84) and (2.85) looks very much like the molecular lattice
spectrum (2.70). Indeed, for first-neighbor interactions only, we have «,, =
kiA,, and the expressions for f,* in the two-mass case and «,* for the
molecular case in (2.70) become identical under the formal substitution

ko k ok ko ow ks
M1_>M’ M2_>M’ ie., I‘La_>ka. (2.86)

2.4.12. Oscillation Frequencies

The Brillouin diagram for the diatomic first-neighbor interaction lattices
is then given by Fig. 2.21 with the same eigenvalue numbering and the
appropriate label changes: for My — M, us— 0 and k,8,," — kp, k18~ —
kmsn2- For the pth-neighbor interacting lattice another property of the
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molecular case carries over: the raising of the optical band “wings” equals
the lowering of the acoustical band ones,

kiBnt — kp = Kmeniz — KiBn™ 2 0. (2.87)

For the general diatomic lattice, the Brillouin diagram can thus be con-
structed based on the monatomic one in Fig. 2.18.

2.4.13. Optic and Acoustic Modes

Finding the eigenvectors y™* of (2.84) corresponding to B,,* is an exer-
cise parallel to (2.75)-(2.76). Indeed, using analogous notation,

+ ._yr2n+ = &klﬁm+ — Ky > 0’

pm FJ"l“ K5  Kmini2
. B (2.88)
S S kifn™ — Kmina
b o fee = s e g
V2 1] Km

It follows that the eigenvectors of M 1K are
Cl;m+ = }"1"+‘Pm =+ y72n+q’m+N/2 = yT+((Pm + Pm+(Pm+N/2)5 (2893')
$n™ =Y @n + Y Pniwiz = T (pn P + Prenia)s (289D

where we still have to fix T+ and y3~ adequately for normalization. Now,
the set of vectors (2.89) constitutes a basis for ¥V, but not a completely
orthonormal one. From the remarks on the “not far from hermitian”
matrix (2.83) it follows that (§,,, $,) = 0 for m # m’. When m = m’ the
acoustical and optical modes (2.89a) and (2.89b), although linearly indepen-
dent, are not orthogonal. The natural description of the diatomic lattice is
thus in terms of a nonorthogonal basis. This is not too inconvenient from the
point of view of a good qualitative picture of the workings of such lattices, in
particular the two-band structure of the frequency spectrum and the identifi-
cation of ““optical” (or “acoustical”) modes with vibrations where the two
unequal masses are preferentially on opposite sides (or on the same side) of
the equilibrium position.

Exercise 2.48. Starting from the equation of motion of the diatomic lattice
in the e-basis Mf = —Kf, perform a nonunitary transformation f = M~1/2g,
where M~12 is a well-defined diagonal matrix, and multiply the whole equation
by M2, Thus arrive at g = —K’g, K’ = M ~Y2KM ~ /2 hermitian. Note that for
first-neighbor interactions in K, K’ represents a first-neighbor interaction plus
two different zero-order interaction springs.

Exercise 2.49. A nonunitary transformation linking the two-band and
diatomic lattices can also be set up comparing the eigenvectors x™* in (2.75) and
y™* for (2.84). The question is to find a2 x 2 matrix T™ (for fixed m) such that
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xmE = Tmymz je AT — TMWRMm Show that such a matrix is diagonal with
elements ¢, :== exp(iw/4) tan*?(mm/N) and t3*, m = 1,2, ..., N/2 — 1.

Exercise 2.50. Find the most general solution vector f(¢) for the diatomic
lattice expressed in terms of the nonorthogonal eigenbasis (2.89). Identify Green’s
matrix in the J-basis. See that upon transforming back to the “physical’’ e-basis
the Green’s operator matrix representative becomes nonhermitian.

2.4.14. Short Survey of Other Lattice Systems

Having worked on different sample cases in this section, we can see that,
generally speaking, the Fourier transform takes us from the fully coupled
“physical” basis to a mathematically simpler one. Immediate extensions
involve lattices with g different springs or masses which repeat a pattern r
times (so N = gr). These can be treated and the problem reduced to diagonal-
izing ¢ x g matrices, which in turn divide the spectrum into ¢ bands which
raise and lower “wings” with respect to the equal-spring or -mass case. For
an overall view and physical application we warmly recommend the classic
book by Brillouin (1946). This book is mainly concerned with actual three-
dimensional crystals of infinite extent. Very readable articles dealing with
finite lattices with different types of constraints and characteristics have been
written by Louck (1962), Merchant and Brill (1973), and Chaturvedi and
Baijal (1974). A very interesting problem whose treatment departs from our
line of work but which nevertheless is important in the physics of semi-
conductors is that of a mass defect in the lattice, i.e., one mass being different
from the others. Articles on this subject have been written by Weinstock
(1970, 1971) and Maradudin et al. (1963). Variants of this problem include
molecular lattices with atomic or bond defects: See Dettmann and Ludwig
(1965), Dean (1967), and Munn (1969). A qualitative description of the
behavior of a linear crystal when mass defects are introduced one at a time is
given by Alonso et al. (1973) and, for the threshold oscillation frequencies of
a diatomic lattice, by Valladares (1975). On the more philosophical aspects
of lattice couplings in very general systems, an article and book by Capra
(1974a, 1974b) are a must for the interested reader.

2.5. Energy in a Lattice

In this section we shall describe the energy present in a vibrating N-mass
lattice. In the absence of damping we expect the total energy to be conserved.
Moreover, when we uncouple the system in its eigenbasis, we shall find that
the individual energies associated with the normal modes are conserved as
well.
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2.5.1. Kinetic and Potential Energy in Each Particle

Consider an N-element lattice described by the vector equation
Mf + Cf + Kf = 0, (2.90)

where, as detailed in Section 2.2, M, C, and K are the inertial, dissipation,
and interaction operators. In the “physical” e-basis the coordinates of f,
fx(t) describe the displacements of the lattice points, while M and C are
represented by diagonal matrices ||M,|| and |c,|, M, being the mass and c,
the damping constant of the nth lattice element. The interaction operator K
is self-adjoint and represented by |«,,| [see Eq. (2.19)].

At some time ¢, the kinetic energy of the nth mass is

EX(t) = IM(fo)%, 2.91)

while its potential energy can be found by integrating the force to which the
particle is subject, Eq. (2.19), along a segment from its equilibrium position
to its actual position f,(¢), all other lattice elements being fixed:

In

E2O) = [ dx( 3 kunt + ux) = 3, sunfife + bemfit. @292
vo m#n m#n

No other forms of energy being present in the lattice, the total energy of the

nth particle is

E(t) = EX(t) + E(t). (2.93)

Substitution of a solution f(z) as found in the last sections into (2.91)—(2.93)
should give E,(¢) for each of the individual particles. The description obtained
in this fashion, however, is not too illuminating. Since the particles are
coupled, as the lattice motion proceeds in time, potential energy is exchanged
between the lattice constituents so that none of the individual E,(z)’s is
constant. As before, a simpler description of the quantities involved is
obtained through writing them in a vector-basis-independent form applied
to the whole lattice.

2.5.2. Total Energy and Its Conservation

The total kinetic energy can be written as
EXt) = D, EJ() = § 2 [¥M,fn = 3 M), 2.94)

using the inner product defined in Section 1.2. The E*(¢) thus defined is
positive even for complex f,(2).
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The total potential energy will be the sum of the E,?(¢) in (2.93) over all
n. In setting up this expression we have to be careful in order not to double-
count the cross terms f, f,, which appear twice. Halving these, we obtain
the sum

E*(6) =D E2(1) =} 2 fitkunfn = 3(E KI), (2.95)
where again we have used the inner product form. The total energy present
in the lattice is thus the sum of (2.94) and (2.95):

E = 3(f, Mf) + 1(f, Kf). (2.96)

This expression is both compact and useful, as we can find the effect of
dissipation on the expected conservation of total energy. Indeed, using the
hermiticity of M, K, and C, the reality of (2.94) and (2.95), and Eq. (2.90),
we find that

9 p = 3k M) + 3¢ ME) + 3 K1) + 36 Kb)
= f, Mf + Kf) = —(f, Cf). (2.97)

The conclusion of (2.97) is that in the absence of dissipation, the total energy
(2.96) of the lattice is conserved.

2.5.3. Energy in the Normal Modes

Our original description in terms of the energy in each lattice element
was inconvenient because potential energy exchange is taking place. As we
saw in the last sections, however, the more natural description of the lattice
is in terms of the eigenvectors of the operator M ~'K. In what follows, as in
Section 2.2, we shall consider all masses equal M = M1 and similarly for all
dissipation coefficients C = ¢1. Let {{,})-, be the orthonormal eigenbasis
of the self-adjoint interaction operator. Then, for

1) =D flOs, K, = k., (2.99)

Eq. (2.90) leads to
MF, + of. + ko fs = 0, (2.99)

and the solutions for f,(¢) were given in Section 2.1. Now, substitution of
(2.98) into the expression for the total energy (2.96) yields

E=3% fEfulm M) + 3> 7 Fu(bn Ky
=12 (M| Jul? + kulful®) = D, Ea, (2.100)
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where we have defined the energy associated with the mth mode (relative to
the -basis):

Ep¥ = YM|ful? + alfal?): {2400

As this depends only on the mth component of the state vector f and cross
terms are absent, we conjecture (and prove below) that there is no energy
exchange between the different modes of the interaction operator eigenbasis.
Moreover, in the absence of dissipation, each of the mode energies (2.101) is
conserved. Parallel to our proof of (2.97) from (2.96) and (2.90), we can
show that the energy loss of the mth mode (2.101) is due only to its own
dissipation term. Using the equation of motion (2.99) for each mode, we
obtain

D Bt = SMUf + Fuf2) + Yol nFie + Tnf2) = —el 2. 2102)

Exercise 2.51. In the expression for the total energy (2.96), assume that not
all masses are equal, so M is not a multiple M1 and does not commute with K.
Then, in finding the eigenbasis of M ~*K [as in the case of the diatomic lattice,
Eq. (2.82)] we have K¢, = y,Md, for the eigenbasis, and the expression for the
total energy analogous to (2.100) becomes

E=133 (4 + vl 7 @m M), (2.103)

m,n

which shows there is energy exchange between modes. Examine the options for
defining conserved ‘“partial’’ energies in cases when (Y, My,) is zero except
for subsets of ¢’s.

2.6. Phase Space, Time Evolution, and Constants of Motion

In our description of the time evolution of a lattice of mechanical
elements we have seen that both f(¢) and its time derivative f(¢) entered as
initial conditions, basically because the equations of motion are differential
equations of second order. Our account of the lattice energy, moreover,
suggests that f(z) and f(¢) should be taken on equal footing. The appearance
of two (or more) quantities intertwined in this way strongly indicates that
vector space concepts give the most economical description of the system.
That this is so will be seen in this section. The concept to be developed is
that of the phase space of a system and the insight it gives into its time evolu-
tion and conservation laws.
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2.6.1. Phase Space of a System

In our mechanical representation of a coupled system by mass-and-
spring lattices, f(z) € ¥V stands for the displacement vector. We define the
momentum vector,* closely related to the velocity vector f(z), as

g(r) = Mf(2), (2.104)

where M is, as before, the inertia operator. In the “physical” e-basis, where
fn = (e, f) are the individual mass displacements, M is represented by a
diagonal matrix M = | M,|, where {M,}¥_, are the N particle masses. We
now construct the 2N-dimensional phase space of N-mass systems, ¥, as a
vector space with elements

g = (;) f,ge?™. (2.105)

In the canonical column-vector realization, § e ¥} is represented by 2N
components, the first being those of f and the second those of g; ¥"I is then
said to be the direct sum of two ¥~ spaces (¥ X = V¥ @ V7).

2.6.2. The Simple Harmonic Oscillator

It will help us to get a better grasp of the phase space #"Y if we consider
the one-dimensional oscillator problem examined in Section 2.1 whose
complete solution is (2.10) and, to start with, disregard damping. As there,
phase space is two-dimensional, ¥} = #"2. We can plot the motion of the
oscillator in this plane as in Fig. 2.24. If the appropriate scales are chosen
for fand g, the system is described by a point which moves clockwise in a
circle. The radius of this circle is proportional to the energy (3 M ~1g2? + kf?),
while the angular velocity is (k/M)2, the same for all radii. The initial
position of the phase-space point is f;, go. In Fig. 2.25 we have represented a
similar but damped oscillator.

2.6.3. The Lattice Equations of Motion in Phase Space

The free lattice equation of motion, Eq. (2.90), may be written as a
vector equation in ¥ as

(—:i —a:'\r:lﬂ——ll) (;) - % (;) (2.106)

Indeed, the first row is only (2.104), which identifies g as the momentum

i Note that in the presence of viscous drag, g.(f) is not the momentum canonically
conjugate to fn(¢) as defined, for instance, in Goldstein (1950, Chapter 6).
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28 28
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Fig. 2.24. Motion in phase space of har- Fig. 2.25. Motion in phase space of
monic oscillators with non- damped harmonic oscillator.
zero elongation and velocity. Distances between arrows
Distances between arrows rep- represent equal time intervals.

resent equal time intervals.

associated to f, while the second row rewrites the original Eq. (2.90) using
both f and g. Equation (2.106) has the simple structure

0 M-t ) )
-K —-CM-1)’
i.e., it is a system of differential equations which are of first order in time.
We shall refer to Hy; as the generator of the equation of motion.

Hu€ = ditg’ where Hy = ( (2.107)

2.6.4. Time-Evolution Operator

The simplification inherent in the reduction of order of the differential
equation of motion is considerable. The reason for this is that the time
evolution becomes a Taylor expansion:

L
tn d.'L
t+t)= > — ==
G+ 1) = > 5o &)

n=0

. (2.108)

=ty

= exp(1 )4

where we can define the exponential of the operator td/dt’ in terms of the
series expansion of the exponential function. This is in line with our descrip-
tion of functions of operators in terms of functions of the representing
matrices in Section 1.5, although here we have exponentiated a differential
operator. The validity of the definition depends here on the validity of the
Taylor expansion of §(¢): we must assume &(z) to be a set of 2N analytic
functions of 7, i.e., to have a convergent Taylor expansion for all finite 7. The
explicit solutions obtained from Section 2.1 onward indicate that this is
valid. Now, the vector §(¢) must satisfy the equation of motion (2.107),
which states that (d/dt')"¢(t') = HEG(z"). The linear combination of such
powers of d/dt’ in (2.108) thus yields

8t + to) = exp(tHm)E(%0) (2.109)
as the general solution of the equation of motion with initial conditions &().

=1,
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2.6.5. The Simple Lattice Case

Equation (2.109) is not only simple-looking but useful as well; it leads
to the explicit expressions of time evolution through the Green’s operator
discussed in Sections 2.2-2.4. Indeed, consider first the case of the simple
lattice of Section 2.2; M = M1, C = 0, and K = —kA. The operator Hy;
takes the form

0 MY . .
Hyg = ( kA 0 ) (simple lattice). (2.110)

Its square is already diagonal,

M kA 0
HE = ( . M‘lkA)’ @.111a)
and its even powers can be written as
1 0
H#" = (@ 1])(M‘lklx)’". (2.111b)

The exponential series can be then evaluated as

o] l=¢] tn
exp(tH) = ( OZ £ de) % Hi
=0even n=1o0 *
B 00 0 t2m+1 o
- & m [t HII Z (Zm i 1)| lH]II
_ [Z(M 1kA)1/2]2m
a S emt

1] " i < [t(M—lkA)1/2]2m+1
+(kA . )[ kA]- /mzo gy . (2112

In the last member we have arranged things so that the cosh x and x~* sinh x
power series are manifest, noting that only integer powers of the operator A
are actually involved. This allows us to write

1
Gr(t) = exp(tHy) = (®

([;) cosh[t(M ~1kA)'?]

0 MY
=1 —-1/2 1 = A 1/2
+ (kA 0 )(M kD) sinh[¢#(M ~k1)*?]

_ ( L ,1‘5’(’)> @.113)
kAG(t) G(2)
having defined
G(t) = (M ~*kA)~ 2 sinh[t(M ~1kA)?] (2.114a)
and

G(t) = cosh[t(M ~kh) 2] (2.114b)




922 Part I - Finite-Dimensional Fourier Transform [Sec. 2.6

as its time derivative [see Egs. (1.76)—(1.79)]. The definition (2.114) is not
new: it has already appeared in Eq. (1.73) for M = 1 = k and corresponds
exactly to the #"¥ Green’s operator and its time derivative for the simple
lattice. We can then write Egs. (2.109) and (2.113) as

8() = Gult — 2)&(%0). (2.115)
In terms of the f- and f-components and initial conditions,
f(2) Gt — 1) G(r — to)\ (fo
; = s ) 2.116
(f(t)) (G(t —t) G- to)) (fo) (2116)

In the last expression we have used (2.104) and introduced G(¢ — #,) through
differentiation of (2.114b) in order to replace the 1-2 element of the matrix
(2.113). This is only a restatement of the time-evolution equation (2.29) and
its derivative.

2.6.6. Group Properties

Several relations in ¥"¥ between the equation of motion and the Green’s
operator become simplified in ¥’If where Gp(¢) is the sole time-evolution
operator. From (2.113) and the composition of two exponential functions
of the same operator, Eq. (1.70), it follows that

Gu(t)Gu(ts) = Gult + 1) (2.117)
as well as
Gu(0) =1, (2.118)

where here 1 is the unit operator in ¥"Y. Writing Gy; in 2 X 2 matrix form,
we reproduce Egs. (2.31).

The foregoing two equations and the obvious property of associativity
show that the time-evolution operators have the first three properties of a
group (Section 1.4). The fourth defining property, that of the existence of an
inverse operator G 1(¢) for every G(¢), is also true here. In fact,

Gr'(?) = Gu(-1), (2.119)

as can be seen from its definition (2.113), (2.117), or explicit calculation. The
set of time-evolution operators Gy(#) for t € (—co, ) thus forms a one-
parameter continuous group of time translations generated by Hy. As the
group elements commute [this can be seen by exchanging #, and #, in (2.117)],
the group is said to be abelian. Thus far in this section we have been speaking
in basis-independent vector and operator language. The physical displace-
ments of the lattice elements and their momenta are the coordinates of € in
e-bases for the displacement and momentum #™sin ¥ f = ¥ ¥ @ ¥¥. We
shall assume that the two #¥™V’s are described by the same basis.
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2.6.7. Evolution Operator in Normal Mode Basis

When it comes to the explicit expression for the time-evolution operator
we can make good use of the Fourier transform since G(7) is the exponential
of Hy; and thus will be represented by a matrix with four diagonal blocks
whenever Hy; is likewise represented. As the operators in the 2 x 2 matrix
form of Hy; are, in the simple case (2.110), only multiples of A and 1, this
happens in the Fourier ¢p-basis. The matrix equation then uncouples into N
separate 2 x 2 matrix equations each of the form

(f,n(t)) _ (@(r ~ 1)) Gult — zo)) (fmao))
Fn(®) Gul(t — 1)) Gult — 10)) \Jult0))”
m=1,2,...,N, (2.120a)
where, from (2.114),
Gt — to) = (M ~kA,)~ Y2 sinh[#(M ~1kA,)2]. (2.120b)

Of course, this is precisely Eqs. (2.28): Recall that the elements of diagonal
A are ), [see Egs. (1.62)], and use the identity (ix)~* sinh ix = x~* sin x.

In terms of 2N-dimensional phase-space diagrams, the motion in the
@-basis (2.120) appears as in Fig. 2.24 in each of the N Fourier component
phase-space planes. The oscillation frequencies are different for different m’s.

Exercise 2.52. Differentiating (2.113), show that
HuGu(?) = Gu(t)Hn = Gn(’), (2.121)

i.e., the time-evolution operator commutes with its generator and is a solution of
the lattice equation of motion. Compare with (2.30).

Exercise 2.53. Write out explicitly the time-evolution operator for a general
interaction operator K (when M = M1 and C = 0, covering the cases of the
farther-neighbor interaction and molecular lattices). Show that you need only
replace kA by — K in (2.113) and (2.114). All the subsequent equations follow
without change; in particular, the Fourier transform continues to provide a
basis, where Green’s operator is represented by a block-diagonal matrix.

Exercise 2.54. Consider the case of the diatomic lattice in Section 2.4. There,
we saw, M and K are self-adjoint but do not commute. Carry out the exponentia-
tion of the generator (2.107) (for C = 0) with due care. Show that

— -1 n
28 = (( WA L) i ) (general, undamped). (2.122)

10 LR

0 (—KM~-)"
Following (2.111)—(2.113), one arrives at the expression
. . !
Guld) = ( GE) MG ) (2.123a)
—KG(t) G@)*

which generalizes (2.113) for noncommuting operators. Here,

G() = (—M~K)~*2sinh[t(— M ~1K)*2] (general, undamped). (2.123b)
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Note that for any well-defined function P,
M-IP(MIK) = M~ P(KM~Y) = P(M1K)M 1, (2.124a)

KP(M'K) = P(KM-Y)K = MP(M*K)M K. (2.124b)

This allows one to generate various identities. In particular, it should be noticed
that if we have found a basis where M KK is represented by a diagonal matrix,
as in the treatment of the diatomic lattice in Section 2.4, Green’s operator G(z)
in 7N and its time derivatives will also be diagonal and easily calculable from
(2.123b). However, the block entries of the time-evolution operator (2.123a)
involve operators M ~1G(z)" and KG(¢) which are not diagonal. Not all is lost,
however, since the expressions for M~* and K are usually simple to calculate if
we know the basis explicitly. This is the case for the diatomic lattice, where the
basis in which M~'K is diagonal is given by (2.89). Try implementing this
program in detail.

Exercise 2.55. Allow for damping. One can solve exactly the case when
M = M1 and C = 1 using the results in Exercises 1.55 and 1.56, transforming
Hy to diagonal form, exponentiating, and transforming back [i.e., Eq. (1.71)].
Show that this leads to the time-evolution operator in #"¥ given by

G8(1) = (GCM(:) + 2TGeM(¢) MjlcacM(z)), @.1253)
— KG™(1) GM(t)
where
GM(t) = exp(—T't)U -2 sinh t UL/ (damped), (2.125b)
U=r? - MK, I =c¢/2M. (2.125¢)

Compare with the results of Exercise 2.16. Notice that here, too, the Fourier
¢-basis allows for the explicit solution of the problem.

Exercise 2.56. Following Exercise 2.17, consider the limit of (2.125) when
the masses are very small, so damping overwhelms inertia and I' = ¢/2M — o0,
while ¢ remains finite. The phase-space description breaks down; f and f become
uncoupled as the time-evolution operator (2.125) written in the form (2.116)
becomes diagonal. Here again the Fourier ¢-basis is the appropriate one.

Exercise 2.57. Given the time-evolution operator G°M(¢) in (2.123) and
(2.125), verify that, indeed, it is generated by Hy of Eq. (2.107). To this end, refer
to Egs. (1.76) and (1.79), which are independent of the adjunction properties of the
operators involved.

There is another area we should like to present in our study of vector
analysis in phase space: the role of the symmetry of a system in finding its
constants of motion.
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2.6.8. Energy as a Sesquilinear Form

The expression for the energy, Eq. (2.96), can be generalized to a
sesquilinear form in ¥°Y. Indeed, we can write for the undamped case

E(8y, Go) = 3(f1, Kfy) + (g1, M~ 'g,)
1

~@ )y o) (o) “vER @9
We shall call Ey; the energy operator. The adjunction of ¥"} vectors and
operators is defined in terms of the corresponding adjunction of vectors and
matrix representatives in ¥ "V: €' is the row vector whose elements are the
complex conjugates of those of § in (2.105), and for ¥} operators we trans-
pose the 2 x 2 matrix and adjoin the ¥V operator elements. Clearly, E(Z, €)
(note €, = § = C,) is the energy corresponding to the phase-space state
vector §. The conservation of the quantity (2.126) under time evolution of the
undamped lattice can be proven through calculating

E(81(2), Co(1)) = GL(HELs(?)
= Ci(t0)Gh(t — 10)EuGu(t — 16)8a(t0) (2.127)
and showing that this equals E(Z,(¢,), §2(%0)), i.e., that
G}I(t — t))EnGu(t — ) = Epn. (2-128)
One can verify directly that (2.128) is true by replacing the expressions for
Gi1, Gy, and Ej; as 2 x 2 matrices with operator elements from (2.123) and
(2.126). It is more illuminating, however, to use an alternative proof which
makes use of Hy;, the generator of Gy;. Consider infinitesimal time evolution,
letting 8¢ :== t — ¢, be as small as we please. We can then use the exponential
series in writing
G(8t) = exp(8tHy) ~ 1 + 8tHy, (2.129)

where we disregard terms of second and higher order in 8z. Substitution into
(2.128) yields

En = (1 + 8tHi)EL(1 + 8¢Hy). (2.130)
Collecting terms in 8¢, we obtain
HhEy + ExHy = 0. (2.131)

This equation is easier to verify than (2.128), as it only involves products of
two operators at a time:

, 0 M-Y\'"(iK © 0 -Kh\M3AK ©
HuBa=\_x ¢ 0 iM-! M-t 0)\o %M"l)

=(%M® = ) (@ %r\g)(~& M(w_l)

= —EyHy. (2.132a)
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Now, the validity of (2.131) implies the validity of the original equation
(2.128), since for any power n,

(Hp)"Ex = —(HE)"ExHy = - - - = (= 1)"ExHE, (2.132b)

and similarly for any sum of powers. Thus, for any well-defined function P
of Hy (see Section 1.5),

P(H})Ey = ExP(—Hp). (2.132¢)

When P = exp, Eq. (2.128) is proven.

We would like to stress that the invariance of the sesquilinear form for
the energy is a consequence of the operator equation (2.131). If we can find a
basis {{,}¥-; in ¥V such that Hy be represented by a 2 x 2 matrix of
diagonal N x N blocks, then [E;; will be similarly represented since it is
constituted by the same operators. It follows that we will have N conserved
“partial” energies since the analogue of Egs. (2.128)-(2.131) holds for each
2 x 2 submatrix involving the mth and (N + m)th rows and columns. These
are the E,” in Eq. (2.101).

2.6.9. Other Conserved Sesquilinear Forms and Symmetry

We can now turn the tables and investigate how to construct conserved
sesquilinear forms in ¥7Y, i.e., to find operators [F;; such that

F, IF,,)
F, F,

is a constant of the motion. The form (2.133) will be conserved if and only
if Eq. (2.131) holds, [F; replacing the energy operator [E,;; that is,

0 -K\(F, F F, IFb)( 0 M-l)
=— . (2134
(M"l UD)([Fc [Fa) (ch Fo/\-K 0 ( )

This embodies the four equations

F(Gy, &) = CiFnts, Fu = ( (2.133)

M-F, = F,K, (2.135a)
KF, = F,M-1, (2.135b)
KF, = — FK, (2.135¢)

M-1F, = —F,M~™. (2.135d)

Note that if we have two operators F{P and F{ satisfying (2.134)-(2.135),
any linear combination of them will also be an operator leading to a con-
served sesquilinear form. We thus need only look for a basis of [F;’s satisfying
these equations. If we set F, = 0 = [, in (2.135) so that the last two equations
are trivially satisfied, one solution to the two first ones is F, = cK, F; =
c¢cM~1 for any constant ¢. This yields, for ¢ = %, the energy operator [Ey;.
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Consider next setting F, = 0 = F; and F, = —F,. This leaves then the
requirement that F, commute with K and M. In light of Sections 1.6, 2.3, and
2.4 we see that [F, may be any of the operators of the dihedral group which are
symmetries of the lattice.

2.6.10. All Constants of Motion for the Simple Lattice

For definiteness, consider the simple lattice (equal masses and springs)
where the symmetry group is constituted by rotations R* and inversions [,
and K, letting D stand for any linear combination of these operators.

The operators we are examining here will thus have the form

¢ D
= 2
Fu (_D @), (2.1362)
D => @Rt + > bl + 2 culp. (2.136b)
k l m

The associated conserved quantity for a particular lattice state is the form
2:133) for €; =€ = &,

F(&, %) = t'Fut = (f, Dg) — (g, Df)
= Z Dmn(f:gn - g;r':fn)

= 2 Duif8n — &1). (2.137)

If we now ask the physical displacements and momenta to be real, the next
to last member in (2.137) tells us that unless D,, = — D,,, the constant
(2.137) will vanish. If we look up the matrix elements of the dihedral opera-
tors [Eqgs. (1.89) and (1.99)],we see that the inversions [; and K,, are symmetric;
hence they cannot be in D, which can only consist then of combinations of
R — R7%, ie.,

FkR = Z (Sm,n-kk - 8m,ﬂ—h:)(.fmgn - gmf;t)

=D (fa&n-i — &nfa-i)- (2.138)

This form is reminiscent of angular momentum. Out of the constant of
motion (2.133) we can also find “partial” conserved quantities. In the -
basis the operator R¥ — R~* is represented by a diagonal matrix [Eq. (1.91)]
which, when substituted into (2.137), leads to

F* = =4 sinQukm/N) Im(f¥ g,). (2.139)
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Since [F;; has diagonal blocks in the ¢-basis, it follows that (for k not a
divisor of N) the members of the sum (2.139) are separately conserved, that is,

F,=Im(f¥s,), m=12,...,N, (2.140)

are N constants of motion which arise because of the invariance of the lattice
under rotations. These, together with the partial-wave energies E,” in (2.101),
give 2N constants of motion. The lattice with real displacements is expected
to have no more constants of motion than the parameters needed to specify
its initial condition: a total of 2N numbers. (See Exercise 2.60.) In terms of
the N-dimensional phase-space diagram in the ¢-basis (Fig. 2.24), the partial
energies E,” fix the radii of the circles, while the F,, are related to the angular
coordinates of the initial conditions.

Exercise 2.58. Verify directly, using the explicit lattice solutions (2.28), that
(2.140) are indeed independent of time.

Exercise 2.59. Using the vector form of the equations of motion, show from
the third member of (2.137) that dF/dt = 0. The derivation is parallel to (2.97).

Exercise 2.60. When we examined the choice F, = 0 = F, in (2.134) we
glossed over pointing out a more general solution to the remaining operators:
F, = KD, F; = M~'D, where D is any operator (2.136b) embodying the
symmetry group of the lattice. Follow the argument starting from (2.136) to show
that for real constants of motion one needs D’s such that D,, = D},. This
excludes rotations but allows operators of the kind [, + [_; [see Eq. (1.92)] or
K’s when permitted. Show that, as in finding (2.140), this does not bring in new
independent constants of motion.

Exercise 2.61. The sesquilinear form E(E;, €,) in (2.126) can be thought of
as defining an inner product (see Section 1.2) with metric Er;. Note, however, that
this is not a positive inner product, since there exists a nonzero vector §, = (gv)
such that E(G,, §o) = 0. This represents the energy of a lattice at rest with all
masses having equal displacements. Such a nonnegative inner product does not
allow for the unique definition of the adjoint of an operator. Nevertheless, one
can help oneself with the adjunction in ¥V in order to define a unique adjoint
under E(&,, €2). The conceptual advantage of this point of view is that Eq. (2.128)
becomes the statement that time evolution is a unitary transformation of phase
space. The generator of this transformation, Hy, is such that iHy is self-adjoint
under E(C;, €z): Eq. (2.131). In this connection, recall Exercise 1.33.

To sum up, we would like to emphasize the role which the Fourier
transform played in the reduction of the description of coupled systems to
that of its uncoupled elements. Since a posteriori we see that the solutions
always involve superpositions of sine waves, it stands to reason that a sine-
wave basis of solutions should be the proper approach to the problem. The
vector space version of this constitutes the essence of the foregoing sections.
Sine waves are not only periodic but have the property that all their deriva-
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tives—or even finite differences—are also functions of the same kind. We
can expect them to appear in most problems which involve linear difference
equations with constant coefficients. When the coefficients are not constant,
other functions appear—the special functions of mathematical physics—
which lend themselves to analyses which parallel Fourier analysis. We shall
have a taste of this in the sections on circular membrane vibration modes and
oscillator wave functions.



